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Abstract Equations are proposed for transmission cells in the presence of multiple
reflections and absorption which generate unwanted fringes. These influence adversely
band intensity measurements. The infrared (IR) spectra generated with these equa-
tions are compared successfully with experimental spectra obtained with BaF2, ZnSe,
and Si windows in parallel mount formation having µm range air gaps. Equations are
extended for integration of a variable path length such as in wedge shaped cells that are
used to mitigate fringe formations but generate other odd problems such as path length
determination. These equations allow the evaluation of the transmission obtained from
boxcar cells whose parallelism is a little offset. This phenomenon modifies the fringe
intensities. The proposed equations were used to calculate the IR spectra of pure
liquid D2O between BaF2 and ZnSe windows with path lengths of around 25 µm and
compared with experimental spectra. Since the fit was very good it indicates that the
proposed equations give better optical properties of pure liquids than that presently
available. This is important for liquid used as standards and in particular water used
here as reference.
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1 Introduction

We recently published detailed analysis of liquid water infrared (IR) spectra. First
with H2O–D2O mixtures and, second, with light and heavy water as a function of
temperature [1,2]. The spectra in these were obtained by attenuated total reflection
(ATR) that gave highly reproducible spectra so that factor analysis (FA) was fruitfully
used. Since this analytical method is quantitative it permitted us to obtain fundamental
information on liquid water. However, this information is not complete because the
far IR (FIR) region is lacking since ATR needs crystals. Since these are not transpar-
ent in the FIR we cannot use that technique to obtain the spectra in that region. The
water studies and previous ones in aqueous solutions indicate that for a comprehensive
understanding of liquid water systems one needs the complete IR spectra from 0 to
at least 4,000 cm−1 [1–11]. This spectral region covers the absorption of the covalent
and intermolecular bonds. Since the FIR region is not accessible by ATR we rely on
transmission measurements that are, however, perturbed by absorption and reflection
at the window’s interface giving the spectra a strong sinusoidal pattern.

Papers reporting on the transmission technique generally ignore the multiple reflec-
tion problems or use over simplifying assumptions that mitigate the problem. Some
approximate methods were developed that decrease and sometimes eliminated the
unwanted interference fringes [12–23]. Several years ago, Crawford et al. evaluated
this phenomenon and concluded that investigators interested in liquid IR intensity
measurements should avoid transmission measurements and, instead, use the ATR
sampling method [24]. Although we agree with this recommendation, the transmis-
sion technique is sometimes unavoidable since the ATR technique does not give the
spectra in the FIR. Only a few quantitative methods were developed for evaluating
accurately the transmission spectrum of a system with multiple reflections [18,23,25–
27]. Kucirkova and Navratil were one of the few that proposed a solution for the IR
measurements of liquids. To deal with the lack of parallelism of the windows they
integrated the transmission over the cell thickness [18]. However, they did not give
the integration in an analytical form which renders this method inapplicable.

The concatenation of the mid IR (MIR) spectra coming from ATR measurements
and FIR spectra coming from transmission measurements is not a simple matter of
joining the spectra coming from both regions since the optical characteristics of the
two methods are different. To obtain irreducible data between them we have to trans-
form the experimental spectra, which are instrument and sampling method dependent,
into the sample optical properties that only depend on the sample. This is done with the
Kramers–Kronig relation, which links both real and imaginary parts of the refractive
index but requires the spectra from null frequency up to “infinite” frequency [8–11,28].
Spectra obtained by transmission measurements can fill the gap. However, the only
suitable window material for FIR is silicon (Si) which has a high refractive index that
produces multiple reflections. Moreover, close to strong bands, the material refractive
index varies considerably modifying the sinusoidal pattern. A strong band eliminates
completely internal reflection in the band range. These perturbations make accurate
IR intensity measurements difficult. Liquid water is one of the worst cases. In the
4,000–0 cm−1 region the real part of the water refractive index varies widely: from
1.1 to 1.5 in the OH stretch region (3,600–3,200 cm−1) and from 1.1 to 8.0 in the

123



592 J Math Chem (2010) 47:590–625

Fig. 1 Transmission cell and
travelling waves. A, B, C, and D
are the separating interfaces of
optical media m0, m2, m1, m3,
and m0, respectively. The
reflection coefficients are rs , r2,
r3 and rL, respectively. The

electric fields are:
−→
U in incident

medium m0,
−→
U i and

←−
U i in

medium m2,
−→
U j and

←−
U j in

medium m1,
−→
U k and

←−
U k in

medium m3 and
−→
T in output

medium m0. The origin of each
traveling waves is on the left side
of the corresponding medium

except for the incident waves
−→
U

and
←−
U for which the origin is at

interface A. �i is pathlength i

m0

rs –r2 r3 –rL

1–rL1+r31–r21+rs
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900–0 cm−1 region. No IR window material can match these variations. This in turn
makes it impossible the elimination of the multiple reflections in the IR cells. These
difficulties are responsible for the variations in the water optical properties reported
that are often outside the stated accuracy [11,29–31].

The purpose of the present work is to provide the analytical equations for evaluat-
ing the transmission spectrum of a sample in between two windows of known optical
properties. We will use these to characterize first the situation of an air sample confined
between pairs of windows of different refractive indices to verify the exactness of the
transmission equations. Thereafter, we will tackle the situation of the IR transmitted in
a liquid water sample situated between two windows. In these the multiple reflections
and absorption modify the intensity of the band giving false intensity values. This is
the phenomenon that prompted us to evaluate thoroughly the reflection–absorption
phenomena in the IR because some pieces did not fit properly in the puzzle.

2 Theoretical

A light signal passing at normal incidence through a sample encounters four interfaces
that separate five regions occupied by four different media. The input and output media
are the same. They are considered to be infinite, that is: no reflections are coming back
from their furthest extremity. Therefore, the problem is to evaluate the transmission
spectrum of a sample (medium m1) of thickness �1 embedded between two windows
of media m2 and m3 of lengths �2 and �3, respectively. These constitute the measuring
cell which we place in air (medium m0). Figure 1 gives a schematic description of the
travelling waves and the mathematical notations used in the equations.
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2.1 Definitions

The four separating interfaces between successive optical media m0, m2, m1, m3, and
m0 are labeled A, B, C, and D, respectively (Fig. 1). For symmetry considerations, the
reflection coefficients are denoted rs, r2, r3 and rL from medium m0 to m2, m1 to m2,
m1 to m3 and m0 to m3, respectively.

2.2 Calculation of the transmission in a standing wave regime

Considering the light beam in a standing wave regime, the electromagnetic waves are

indicated by the following electric fields [32]:
−→
U in incident medium m0,

−→
U i and

←
Ui

in medium m2,
−→
U j and

←
Uj in medium m1,

−→
U k and

←
Uk in medium m3 and finally

−→
T in

output medium m0. Electric fields
←
U in incident medium m0 and

←
T in output medium

m0 are not displayed in Fig. 1 due to the infinite nature of both section of medium

m0,
←
Tdoes not exists and

←
U will not produce any component to be included into

−→
U .

The time, location and frequency dependence of the electrical vectors were removed
where they were implicit. The origin of each traveling waves is on the left side of the

corresponding medium except for the incident waves
−→
U and

←
U for which the origin

is at interface A.

2.2.1 General case: calculation of the complex transmission of a three layer system

The following calculations are made by assuming a stationary state. The reflection
coefficients are complex values. At interface D the transmission relation is given by
[32]:

−→
T = −→U k(�3)× (1− rL) = E3

−→
U k(0)× (1− rL) (1)

where E3 is the propagation term of wave
−→
U k from interface C to D (length �3).

Similarly, at interface C, we have:

−→
U k(0) = E1

−→
U j(0)× (1+ r3)+ E2

3
−→
U k(0)× r3rL (2)

where E1 is the propagation term of wave
−→
U j from interface B to C (length �1).

Equation (2) gives:

−→
U k(0) = (1+ r3) E1

1− r3rL E2
3

−→
U j(0) (3)
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Similarly, after combining the results at interface B and A one obtains the cell
transmission:

−→
T = (1− rL) (1+ r3) (1− r2) (1+ rs) E1E2E3(

1− r3rLE2
3

) (
1− r2rsE2

2

)− E2
1

(
r2 − rsE2

2

) (
r3 − rLE2

3

)
−→
U (0) (4)

2.2.2 Windows of same material

In spectroscopy, the cell windows are made of the same material. Because of this
r2 = r3 and rs = rL which gives for Eq. 4:

−→
T =

(
1− r2

s

) (
1− r2

2

)
E1E2E3(

1− r2rsE2
3

) (
1− r2rsE2

2

)− E2
1

(
r2 − rsE2

2

) (
r2 − rsE2

3

)
−→
U (0) (5)

with rs = n2−1
n2+1 and r2 = n2−n1

n2+n1
.

The propagation term in medium x is [25]:

⎧
⎪⎨

⎪⎩

Ix = ‖Ex‖2 = e−
4πν
c kx �x

αx = 4πν
c kx�x

Ex = e−jKx�x × e−
αx
2 = e− j 2πν

c nx �x × e−
2πν
c kx �x

(6)

where Kx�x is the scalar product of the propagation and displacement vectors, αx is the
loss term (absorption); ν, the wave frequency; nx and kx , the real and imaginary parts
of the refractive index; respectively, and c the speed of light in vacuum. Equation 5
indicates that the output wave

−→
T is a complex expression whose amplitude (norm)

is measured as a function of frequency. Since
−→
T and

−→
U (0) are collinear, the overall

transmission T of the cell can be written as complex number ratio: (η+ jξ)/(χ +jµ).
Hence:

T =
∥∥∥
−→
T
∥∥∥

2

∥∥∥
−→
U (0)

∥∥∥
2 =

η2 + ξ2

χ2 + µ2 (7)

To simplify the equations we introduce the propagation delay term, Tx associated
to the angular frequency ω = 2πν:

nx�x 2πν/c = ωTx (8)

Equation 5 becomes:

−→
T =

(
1− r2

s

) (
1− r2

2

)
e−

α1+α2+α3
2 e−jω(T1+T2+T3)

(
1−r2rse−α2 e−2jωT2

) (
1−r2rse−α3 e−2jωT3

)
−e−α1 e−2jωT1

(
r2−rse−α2 e−2jωT2

) (
r2−rse−α3 e−2jωT3

)

×−→U (0) (9)
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After reorganization, one obtains for Eqs. 9 and 7:

T =
(
1− r2

s

)2 (
1− r2

2

)2
e−(α1+α2+α3)

Re2 (D)+ Im2 (D)
(10)

where D is the complex denominator of the rightmost term in Eq. 9. The Eq. 10 numer-
ator contains the sample attenuation (absorption) ( e−α1/2 term) and the denominator
contains the resonant (or oscillating) term coming from the multiple reflections.

Developing the complex exponential terms in Eq. 9 gives:

D=

⎧
⎪⎪⎨

⎪⎪⎩

[
1− r2rse−α2 cos (2ωT2)+ jr2rse−α2 sin (2ωT2)

]× [1− r2rse−α3 cos (2ωT3)+ jr2rse−α3 sin (2ωT3)
]

− [e−α1 cos (2ωT1)− je−α1 sin (2ωT1)
]

× [r2 − rse−α2 cos (2ωT2)+ jrse
−α2 sin (2ωT2)

]× [r2 − rse−α3 cos (2ωT3)+ jrse−α3 sin (2ωT3)
]

(11)

Separating the real [Re(D)] and imaginary [Im(D)] parts in D gives:

Re (D) =

⎧
⎪⎪⎨

⎪⎪⎩

1− r2
2e−α1 cos (2ωT1)− r2rse−α2 cos (2ωT2)− r2rse−α3 cos (2ωT3)

+ r2rse−(α1+α2)cos (2ω (T1 + T2))+ r2rse−(α1+α3)

×cos (2ω (T1 + T3))+ r2
2r2

s e−(α2+α3)cos (2ω (T2 + T3))

− r2
s e−(α1+α2+α3)cos (2ω (T1 + T2 + T3))

(12)

Im (D) =

⎧
⎪⎪⎨

⎪⎪⎩

− r2
2e−α1 sin (2ωT1)+ r2rs

[
e−α2 sin (2ωT2)+ e−α3 sin (2ωT3)

]

− r2rse−(α1+α2)sin (2ω (T1 + T2))− r2rse−(α1+α3)

×sin (2ω (T1 + T3))− r2
2r2

s e−(α2+α3)sin (2ω (T2 + T3))

+ r2
s e−(α1+α2+α3)sin (2ω (T1 + T2 + T3))

(13)

Due to the 2 ωTi terms, Re(D) and Im(D) oscillate with ν. In ordinary condi-
tions, the window thickness is far larger than that of the sample. Therefore, the terms
that vary the most rapidly in D are those with T2 or T3. Assuming T1 << T2, and
T1 << T3, the fastest variation of Re(D) and Im(D) will occur within the condition:
2ωTi = 2mπ(i = 2, 3), when m increases by one unit. That is:

ni�i 2πν/c = ωTi = mπ (14)

where c is the speed of light (in m/s). ν/c replaced by 100ν̃ gives the values in wave-
number (cm−1). The interval (	ν̃) that produces an almost complete oscillation of
Re(D) and Im(D) is:

	ν̃ = 1/200ni�i (15)

For thick samples, the oscillations are very weak and consequently difficult to
observe. However, they are unavoidable and one must be aware of their existence and
try to minimize them.
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2.2.3 Removing the window fast oscillations

The oscillations features generated by thick windows can be eliminated in numeri-
cal calculations. This is done by separating the slow from the fast oscillating terms.
Therefore, from Eqs. (12) and (13) one gets:

Re (D) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1− r2
2e−α1 cos(2ωT1)+ cos(2ωT1)[r2rse−(α1+α3)cos(2ωT3)

+ r2rse−(α1+α2)cos(2ωT2)− r2
s e−(α1+α2+α3)cos(2ω{T2 + T3})]

− sin(2ωT1)[r2rse−(α1+α3) sin(2ωT3)+ r2rse−(α1+α2)

× sin(2ωT2)− r2
s e−(α1+α2+α3) sin(2ω{T2 + T3})] − r2rse−α2

×cos(2ωT2)− r2rse−α3 cos(2ωT3)+r2
2r2

s e−(α2+α3)cos(2ω(T2+T3))

(16)

Im(D) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−r2
2e−α1 sin(2ωT1)+ sin(2ωT1)[−r2rse−(α1+α3) cos(2ωT3)

− r2rse−(α1+α2) cos(2ωT2)+ r2
s e−(α1+α2+α3) cos(2ω{T2 + T3})]

+ cos(2ωT1)[−r2rse−(α1+α3)sin(2ωT3)− r2rse−(α1+α2)

×sin(2ωT2)+ r2
s e−(α1+α2+α3)sin(2ω{T2 + T3})] + r2rs[e−α2

×sin(2ωT2)+ e−α3 sin(2ωT3)] − r2
2r2

s e−(α2+α3)sin(2ω(T2 + T3))

(17)

In these the first lines contain the slow varying terms (with frequency). The three
other lines are quick varying terms that contain the window large periods T2 and T3.

Since the numerator in Eq. (10) contains no oscillating terms it is sufficient to
eliminate the interference fringes to integrate the denominator and consider constant
the sample properties (valid in a small frequency interval). Integration of Re(D) and
Im(D) over a complete period for T2 and T3 (where a complete period is T2+T3) will
eliminate all terms in cos 2ωTi and sin 2ωTi where Ti = T2, T3, or T2 + T3, so that:

{
Re (D) = 1− r2

2e−α1 cos (2ωT1)

Im (D) = −r2
2e−α1 sin (2ωT1)

(18)

With this, Eq. (10) becomes:

T =
(
1− r2

s

)2 (
1− r2

2

)2
e−

α1+α2+α3
2

[
1− r2

2e−α1 cos (2 ω T1)
]2 + [−r2

2e−α1 sin (2 ω T1)
]2

=
(
1− r2

s

)2 (
1− r2

2

)2
e
− α1+α2+α3

2

1− 2r2
2e−α1 cos (2 ω T1)+ r4

2e−2α1
(19)

Equation (19) looks like Zelsmann’s Eq. (10a) [22] with, however, some differ-
ences. In his equation, an erroneous factor of four is present in the denominator; the
reflections at air/window interfaces are not considered and the term |r2

2 | is used instead
of the complex value r2

2 . However, this relation is correct for a single reflection but
not for multiple ones which is the case in real situations. For these reasons Eq. (19) is
favored over Zelsmann’s one.
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2.3 Background measurement: the case of an air sample

The transmission spectrum of the empty cell is required before that of a sample to
correct for the window’s absorption. The calculations for an air sample are obtained
by making r2 = rs = r = n2−1

n2+1 and α1 = 0. This gives for Eq. (9):

−→
T =

(
1−r2

)2
e−

α2+α3
2 e−jω(T1+T2+T3)

(
1−r2e−α2 e−2jωT2

)(
1−r2e−α3 e−2jωT3

)
− r2e−2jωT1

(
1−e−α2 e−2jωT2

)(
1−e−α3 e−2jωT3

)

×−→U (0) (20)

After transformation, the denominator becomes:

D =
[
1− r2e−α2 cos (2ωT2)+ jr2e−α2 sin (2ωT2)

]

×
[
1− r2e−α3 cos (2ωT3)+ jr2e−α3 sin (2ωT3)

]

−r2 [cos (2ωT1)− j sin (2ωT1)
]

× [1− e−α2 cos (2ωT2)+ je−α2 sin (2ωT2)
]

× [1− e−α3 cos (2ωT3)+ je−α3 sin (2ωT3)
]

(21)

Separating the real and imaginary parts in D gives:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Re (D) = 1− r2cos (2ωT1)− r2e−α2 cos (2ωT2)+ r2e−α2 cos (2ω (T1 + T2))

− r2e−α3 cos (2ωT3)+ r2e−α3 cos (2ω (T1 + T3))+ r4e−(α2+α3)

×cos (2ω (T2 + T3))− r2e−(α2+α3)cos (2ω (T1 + T2 + T3))

Im (D) = −r2e−α1 sin (2ωT1)− r2
[
e−α2 sin (2ωT2)+ e−α3 sin (2ωT3)

]

+ r4e−(α2+α3)sin (2ω (T2 + T3))+ r2e−(α1+α3)sin (2ω (T1 + T3))

+ r2e−(α1+α2)sin (2ω (T1 + T2))

+ r2e−(α1+α2+α3)sin (2ω (T1 + T2 + T3))

(22)

It is verified that Eqs. (12), (13) and (22) give identical results for an air sample.
Eq. (22) can be further reorganized and simplified into:

Re (D) = 1− r2 cos (2ωT1)− 2r2e−α2 sin (ω (T1 + 2T2)) sin (ωT1)− 2r2e−α3

× sin (ω (T1 + 2T3)) sin (ωT1)+ r4e−(α2+α3) cos (2ω (T2 + T3))

− r2e−(α2+α3) cos (2ω (T1 + T2 + T3)) (23)

Re (D) = 1− r2 cos (2ωT1)− 2r2 sin (ωT1)
{
e−α2 sin (ω (T1 + 2T2))

+e−α3 sin (ω (T1 + 2T3))− e−(α2+α3) sin (ω (T1 + 2T2 + 2T3))
}

−r2
(

1− r2
)

e−(α2+α3) cos (2ω (T2 + T3)) (24)
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2.4 Absorbing sample: complex refractive index

2.4.1 General case: two identical windows

An absorbing sample will display a complex refractive index (n∗1 = n1 + jk1) which
will produce a complex reflection coefficient, r∗2 :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

r∗2 =
n2 − n∗1
n2 + n∗1

= n2 − (n1 + jk1)

n2 + (n1 + jk1)
= r2R + jr2I

r2R = n2
2 − n2

1 − k2
1

(n2 + n1)
2 + k2

1

r2I = −2
n2k1

(n2 + n1)
2 + k2

1

(25)

This introduced into Eq. (9) modifies Eq. (10) into:

T =
(
1− r2

s

)2 ∥∥1− r∗22

∥∥2
e−(α1+α2+α3)

Re2 (D)+ Im2 (D)
(26)

Since the amplitude of the product of two complex numbers is equal to their prod-
uct amplitudes, the numerator amplitude will only change with the amplitude term
(1 − r∗22 ). The denominator (D) amplitude requires more attention. Equation (11)
becomes:

D =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
1− [r2R + jr2I

]
rse−α2

[
cos(2ωT2)− j sin(2ωT2)

])

×(1− [r2R + jr2I

]
rse−α3

[
cos(2ωT3)− j sin(2ωT3)

])

−e−α1
[
cos(2ωT1)− j sin(2ωT1)

]([
r2R + jr2I

]

− rse−α2
[
cos(2ωT2)− j sin(2ωT2)

])

×([r2R + jr2I

]− rse−α3
[
cos(2ωT3)− j sin (2ωT3)

])

(27)

Expansion of this gives:

D =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1− r2Rrse−α2 cos(2ωT2)− r2I rse−α2 sin(2ωT2)− jr2I rse−α2 cos(2ωT2)

+ jr2Rrse−α2 sin(2ωT2)
)× (1− r2Rrse−α3 cos(2ωT3)

− r2I rse−α3 sin(2ωT3)− jr2I rse−α3 cos(2ωT3)+ jr2Rrse−α3 sin(2ωT3)
)

− e−α1
[
cos(2ωT1)− j sin(2ωT1)

]

×

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

r2
2R − r2Rrse−α2 cos(2ωT2)− r2Rrse−α3 cos(2ωT3)

+ r2
s e−α2−α3 cos(2ωT2)cos(2ωT3)− r2

2I − r2I rse−α2

× sin(2ωT2)− r2I rse−α3 sin(2ωT3)− r2
s e−α2−α3

× sin(2ωT2) sin(2ωT3)+ jr2I r2R − jr2I rse−α3 cos(2ωT3)

+ jr2Rrse−α2 sin(2ωT2)− jr2
s e−α2−α3 sin(2ωT2)cos(2ωT3)

+ jr2I r2R − jr2I rse−α2 cos(2ωT2)+ jr2Rrse−α3 sin(2ωT3)

− jr2
s e−α2−α3 cos(2ωT2) sin(2ωT3)

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

(28)
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This is separated into the real and imaginary parts:

Re (D) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− (r2
2R − r2

2I

)
e−α1 cos(2ωT1)− 2r2I r2Re−α1 sin(2ωT1)

− rse−α2
[
r2Rcos(2ωT2)+ r2I sin(2ωT2)

]

− rse−α3
[
r2Rcos(2ωT3)+ r2I sin(2ωT3)

]+ (r2
2R − r2

2I

)

× r2
s e−α2−α3 cos(2ω

[
T2 + T3

]
)+ 2r2Rr2I r2

s e−α2−α3

× sin(2ω
[
T2 + T3

]
)+ rse−α1−α2

[
r2Rcos

(
2ω
[
T1 + T2

])

+ r2I sin
(
2ω
[
T1 + T2

])]+ rse−α1−α3
[
r2Rcos

(
2ω
[
T1 + T3

])

+ r2I sin
(
2ω
[
T1 + T3

])]

−r2
s e−α1−α2−α3 cos(2ω

[
T1 + T2 + T3

]
)

(29)

Im(D) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+(r2
2R − r2

2I

)
e−α1 sin

(
2ωT1

)− 2r2I r2Re−α1 cos
(
2ωT1

)

− r2I rs
[
e−α2 cos

(
2ωT2

)+ e−α3 cos
(
2ωT3

)]

+ r2Rrs
[
e−α2 sin

(
2ωT2

)+ e−α3 sin
(
2ωT3

)]

+ r2I rse−α1−α2 cos
(
2ω
{
T1 + T2

})− r2Rrse−α1−α2

× sin
(
2ω
{
T1 + T2

})+ r2I rse−α1−α3 cos
(
2ω
{
T1 + T3

})

− r2Rrse−α1−α3 sin
(
2ω
{
T1 + T3

})+ 2r2Rr2I r2
s e−α2−α3

×cos
(
2ω
{
T2 + T3

})+ (r2
2I − r2

2R

)
r2
s e−α2−α3 sin

(
2ω
{
T2 + T3

})

+ r2
s e−α1−α2−α3 sin

(
2ω
{
T1 + T2 + T3

})

(30)

One can verify that for a real refractive index n1 (i.e.: k1 = 0 that gives r2I = 0),
Eqs. (29) and (30) reduce to Eqs. (12) and (13), respectively. Equations (29) and (30)
have to be introduced into Eq. (26) for the exact calculation of an absorbing sample.

2.4.2 Removing the window’s fast oscillations

Keeping only the slow varying terms in (D) of Eqs. (29) and (30) give the same
simplifications as in Eq. (19). After this operation, one gets:

{
Re (D) = 1− (r2

2R − r2
2I

)
e−α1 cos (2 ω T1)− 2r2I r2Re−α1 sin (2 ω T1)

Im(D) = (
r2
2R − r2

2I

)
e−α1 sin (2 ω T1)− 2r2I r2Re−α1 cos (2 ω T1)

(31)

This equation being different than Eq. (18) indicates that the interference patterns
obtained from absorbing samples are different from non absorbing ones. Equation
(31) gives after rearrangement:

Re2 (D)+ Im2(D) = 1− 2
(

r2
2R − r2

2I

)
e−α1 cos (2 ω T1)

−4r2I r2Re−α1 sin (2 ω T1)+
(

r2
2R + r2

2I

)2
e−2α1 (32)
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The reflection coefficient complex nature generated by an absorbing sample makes
Eq. (32) different from the denominator in Eq. (19). In Eq. (32) we have

r2
2R − r2

2I =
(
n2

2 − n2
1

)2 + k4
1 − 6n2

2k2
1 + 2n2

1k2
1

[
(n2 + n1)

2 + k2
1

]2 (33)

(
r2
2R + r2

2I

)2 =
[(

n2
2 − n2

1

)2 + k4
1 + 2n2

2k2
1 + 2n2

1k2
1

]2

[
(n2 + n1)

2 + k2
1

]4 (34)

The terms in Eqs. (33) and (34) are different from that in Eq. (19) in which the
complex values of the reflection coefficient was ignored. From Eq. (25) we have:

∥∥∥1− r∗22

∥∥∥
2 =

∥∥∥1− (r2R + jr2I

)2
∥∥∥

2 =
∥∥∥1− r2

2R + r2
2I − 2jr2Rr2I

∥∥∥
2

=
(

1− r2
2R + r2

2I

)2 + 4r2
2Rr2

2I (35)
∥∥∥1− r∗22

∥∥∥
2 = 1+ r4

2R + r4
2I − 2r2

2R + 2r2
2I + 2r2

2Rr2
2I (36)

The transmission of an absorbing sample between two transparent windows is eval-
uated with Eqs. (26), (32), and (36).

2.4.3 Integration over sample thickness variations

Depending on the experimental setup, interferences due to the sample are partly
damped because of thickness variations [18]. This comes from: (i) lack of parallelism
of the windows; (ii) window deformations due to pressure variations; (iii) window
roughness; or (iv) a combination of these. Integrating the transmitted intensity over
a thickness range takes care of these variations. Numerical integration was proposed
[18] that is not easy to handle because of the approximations used. However, analytical
integration is possible with approximations evaluated below.

Interference fringes come from oscillating terms in Eqs. (26) and (32). Since the
other terms vary slowly with the sample thickness their average value can be used.
Integration over sample thickness �1 will affect the trigonometric functions in Eqs.
(26) and (32). Analytical integration of Eq. (26) necessitates the replacement of the
denominator [Re2(D) + Im2(D)] by an easily integrable function. This is done by a
development in series. From Eq. (32), the denominator in Eq. (26) [Re2(D)+ Im2(D)]
is written as 1+ Q where Q is:

Q = −2
(

r2
2R − r2

2I

)
e−α1 cos (2ωT1)− 4r2I r2Re−α1 sin (2ωT1)

+
(

r2
2R + r2

2I

)2
e−2α1 (37)
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With a sample thickness variation of±δ we have –1 < Q < 1. 1/(1+Q) developed
with the series = 1–Q + Q2–Q3. . . gives for Eq. (26):

T ≈
(

1− r2
s

)2 ∥∥∥1− r∗22

∥∥∥
2

e−(α1+α2+α3) ×
[
1− Q (�1)+ Q2 (�1)− Q3 (�1) · · ·

]

(38)

An analytical form for the integration of Eq. (38) is possible giving an approx-
imation the validity of which must be evaluated. Appendix A gives a step by step
development of the integration of Eq. (38). Assuming a square box distribution of the
sample thickness (a uniform distribution over the sample area), the analytical equation
obtained from the integration up to the 6th harmonics of the fundamental modulating
period due to the sample thickness variation (±δ) is given by:

1
2δ

�1+δ∫

�1−δ

Td�1 ≈
(
1− r2

s

)2 ∥∥1− r∗22

∥∥2
e−(α1+α2+α3) × 1

1−(r2
2R+r2

2I

)2e−2α1

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
+ sin(400πν̃n1δ)

200πν̃n1δ
e−α1

[(
r2
2R − r2

2I

)
cos (2ωT1)+ 2r2I r2R sin (2ωT1)

]

+ sin(800πν̃n1δ)
400πν̃n1δ

e−2α1

{[(
r2
2R − r2

2I

)2 − 4r2
2I r2

2R

]
cos (4ωT1)

+ 4r2I r2R
(
r2
2R − r2

2I

)
sin (4ωT1)

}

+ sin(1200πν̃n1δ)
600πν̃n1δ

e−3α1

{(
r2
2R − r2

2I

) [(
r2
2R − r2

2I

)2 − 12r2
2I r2

2R

]
cos (6ωT1)

+ 2r2I r2R

[
3
(
r2
2R − r2

2I

)2 − 4r2
2I r2

2R

]
sin (6ωT1)

}

+ sin(1600πν̃n1δ)
800πν̃n1δ

e−4α1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[(
r2
2R − r2

2I

)4 + 16r4
2I r4

2R − 24
(
r2
2R − r2

2I

)2
r2
2I r2

2R

]

×cos (8ωT1)+ 8
(
r2
2R − r2

2I

)

×r2I r2R

[(
r2
2R − r2

2I

)2 − 4r2
2I r2

2R

]
sin (8ωT1)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+ sin(2000πν̃n1δ)
1000πν̃n1δ

e−5α1

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
r2
2R − r2

2I

) [(
r2
2R − r2

2I

)4 − 40
(
r2
2R − r2

2I

)2
r2
2I r2

2R

+ 80r4
2I r4

2R

]
cos (10ωT1)

+2r2I r2R ×
[
5
(
r2
2R − r2

2I

)4 − 40
(
r2
2R − r2

2I

)2
r2
2I r2

2R

+ 16r4
2I r4

2R

]
sin (10ωT1)

+ sin(2400πν̃n1δ)
1200πν̃n1δ

e−6α1

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[(
r2
2R − r2

2I

)6 − 60
(
r2
2R − r2

2I

)4
r2
2I r2

2R

+240
(
r2
2R − r2

2I

)2
r4
2I r4

2R − 64r6
2I r6

2R

]
cos (12ωT1)

+
[
12
(
r2
2R − r2

2I

)5
r2I r2R − 160

(
r2
2R − r2

2I

)3
r3
2I r3

2R

+192
(
r2
2R − r2

2I

)
r5
2I r5

2R

]
sin (12ωT1)

+ f (cos (2pωT1) , sin (2pωT1) , p > 6)

(39)
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The big advantage of this analytical form is that numerical applications are easy and
results are quickly obtained contrary to numerical integration. The maximum thick-
ness deviation from the average value, δ, is the important parameter of this integration.
These calculations can be made in a spreadsheet program where the parameter can be
varied rapidly.

Equation (39) is useful for handling sample thickness variations, knowing that
wedge shaped cells are often used for determining sample extinction coefficients [23].
In these, even though the window plates are very flat it is impossible to obtain a
uniform sampling cavity [33]. Nonetheless, for this and other situations Eq. (39) gives
excellent results for the determination of the sample optical properties.

3 Chemicals, solutions, and IR measurements

The IR measurements were obtained with a model 510P Nicolet FTIR spectrometer
with a DTGS (deuterium triglycine sulfate) detector. The samples were contained in
transmission cells with Si, ZnSe and BaF2 windows 4 mm thick separated by 25, 50,
100, and 1800 µm spacers. The spectra obtained at 27.1 ◦C come from an accumula-
tion of 100 scans or more at 2 cm−1 resolution. The data are transferred to a spreadsheet
program for numerical calculations. Compensation for the windows absorption was
made with single window absorption spectra after removing their insertion loss. This
is obtained at high frequency where the windows do not absorb.

4 Results and discussion

4.1 Accuracy of the integration

The accuracy of the approximation up to the 6th harmonic is evaluated in a situation
where lower order approximations failed for water sandwiched between Si windows.
This pair creates high amplitude reflections due to the great difference in the refrac-
tive indices. Furthermore, water has very broad intense bands and low intensity ones.
Absorption of water films 2.2 µm thick was calculated with Eqs. (26) and (32) for Si
windows (4 mm thickness). These equations deal with uniform films. The spectra were
also calculated with the approximate Eq. (39) for which the thickness variation was
arbitrarily put close to zero: 0.001 µm (i.e. δ →0). The results are plotted in Fig. 2a.
The difference (right scale) between the two methods is less than ±10−4 absorbance
unit (AU). These results indicate that the approximate method gives sufficiently good
results. In the strong absorption regions (∼3,400 cm−1), the difference between the
two methods is null because the strong absorption damps the signal. In these regions
multiple reflections do not occur. The overall result indicates that the approximation
equation is valid for reflection ratio up to 0.60.

In Fig. 2a we observe in the water low absorption regions situated between 4,800–
3,800 and 2,800–2,000 cm−1 strong distortion attributed to multiple reflections in the
water films. These are clear examples of the influence of multiple reflections taking
place at the window interfaces. This justifies the effort of the present work to circum-
scribe this phenomenon.
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Fig. 2 Calculated water film intensities between two Si windows excluding air/window reflection loss.
a With exact Eqs. (26) and (32) and approximate Eq. (39) up to the 5th and 6th harmonics for a uniform
2.2 µm film: (1, black) (Note: the curves are superimposed); and (2) difference between exact and approxi-
mate calculation: 5th (blue, biggest differences) and 6th (red, smallest differences) harmonics. b For parallel
(1, red), and edge 1.8 µm (δ = 1.5 µm) film (2, black) with Eq. (39). (Color figure online)

4.2 Effect of sample thickness variation (wedge shaped cell)

The use of a wedge shaped cell was proposed as a means to reduce the distortion
created by strong internal reflections inside the sample by retrieving the Beer–Lam-
bert’s absorption slope: absorption as a function of sample thickness [23]. However,
this does not eliminate the perturbations generated by the internal multiple reflections.
Equations developed in the theoretical section (section II D) were used to verify that
the experimental spectrum is related to the film’s physical dimensions and its optical
characteristics.

The effect of the sample thickness variation is illustrated by the two spectra in
Fig. 2b. Spectrum (1) is from a uniform 1.8 µm water film and spectrum (2) from a
film that varies linearly from 0.3 to 3.3 µm giving an average of 1.8 µm. The first
spectrum is strongly distorted while second is apparently not distorted. This is a false
impression because the base line suffers a large shift in the low absorption regions
(7,900–3,900 and 2,800–2,400 cm−1). Attempts to correct the baseline by placing it
at zero in the non absorbing regions will give negative absorption in the low frequency
region. This will result in an incorrect spectrum. Although the base lines shift pro-
cedure is often used spectrum (2) in Fig. 2b clearly illustrates that it is unacceptable.
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When only MIR transmission measurements are obtained, this phenomenon pass unno-
ticed because the negative part in the FIR has not been obtained. However, a close
look at spectrum (2) indicates that a sinusoidal remains in the non absorbing regions.
Nonetheless, the absorbing bands are perturbed by this phenomenon which affects
the band intensity measurements. Moreover, the band shape being distorted makes
the bands difficult to simulate by band fit procedures. When the baseline is arbitrary
displaced, the intensity measurements and simulations give poor results.

4.3 Comparison between results obtained for liquid water with the equations
proposed and those of Zelsmann

In our IR study of liquid water and aqueous mixtures we used the ATR technique
with a ZnSe crystal which easily gives good reproducible spectra [1–7]. However,
since this crystal absorbs below 650 cm−1 the low frequency region is inaccessible.
To obtain the spectra of light and heavy water in this region Zelsmann measured the
transmission spectra of a 19.3 µm water film between two Si windows [22]. Because
of its high refractive index which gives rise to multiple reflections in the water sample
it was necessary to redo some calculations to extract the water optical properties in the
450–50 cm−1 region. Trace (1) in Fig. 3a gives the results of Zelsmann and in trace
(2) that calculated with Eq. (39) up to the 6th harmonics by using the water k and n
values given in ref. [22]. Figure 3a shows that the two curves are almost coincident
with, however, some differences. These are plotted with an expanded scale in Frame
(b). In the low frequency region this plot gives only a difference of±0.05 AU but since
the signal is low it gives a 25% error. We cannot ignore this, especially when trying
to concatenate data from different spectral regions using different optical materials
and techniques. For example, Fourier transformation of data with a sharp step will
generate a sinusoidal train in the spectra. One of the objectives of this paper is to
provide trouble free equations that will avoid such mismatches.

4.4 IR spectra of BaF2, ZnSe and Si windows

Figure 4 shows the transmission spectra in AU of BaF2 (1), ZnSe (2), and Si (3) win-
dows with their respective insertion loss. The spectra are flat with very weak bands in
the 1,600–1,400 cm−1 region for BaF2 and stronger ones for ZnSe below 700 cm−1.
For these, small remaining fluctuations of less than 5 mAU may originate from micro-
impurities, surface imperfections, or a combination of both. However, these windows
absorb in the FIR rendering them useless for obtaining spectra in that region. Neverthe-
less, their evaluations are useful for understanding the multiple reflection phenomena
and serve as a reference for their transparency regions which are from 7,000 to 700
and 7,000 to 500 cm−1 for BaF2 and ZnSe, respectively.

The Si window (Fig. 4, spectrum 3) is both a useful and difficult window. Its trans-
parency range is between 9,000 and 10 cm−1 which makes it a good candidate for
the FIR region. However, it has moderate absorption below 1,500 cm−1 and strong
bands near 600 cm−1. Sample bands situated downstream from this strong band will
be perturbed by it. Furthermore, the Si high refractive index (3.4223 @ 5 µm) will
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Fig. 3 Calculated 19.3 µm water film between two Si windows excluding window reflection loss. a With
corrected Zelsmann’s equation (see text) (1, full line) and with Eq. (39) and δ = 0.001 µm (2, dotted line).
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Fig. 4 IR spectra of 4 mm windows: (1, blue) BaF2; (2, black) ZnSe; and (3, red) Si (including reflection
loss). (Color figure online)

produce high reflection losses at its surface. This will generate strong interference
fringes in a boxcar cell. Moreover, from the Kramers–Kronig relationship between
the real (n) and imaginary (k) parts of the refractive index, the real part will change
close to an absorption band. This is the case for ZnSe whose refractive index real part
was reported down to 500 cm−1 (n = 2.43 @ 5 µm and 2.3 @ 20 µm) [34,35]. The
refractive indices of BaF2 also decreases below 1,000 cm−1 [34,35]. However, since
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we do not have the refractive index values of BaF2 and Si windows near their strong
absorption we considered them constant at respectively 1.46 and 3.422 in their useful-
ness region. That is outside the perturbation regions of the strong absorption. However,
the limit of these regions has to be delimitated so as to be as small as possible.

4.5 Thick layer oscillations

The problem of the multiple reflections in IR cells for liquid or gas samples cannot
be discarded but needs special care. It is generally claimed that for sufficiently thick
samples or windows, the multiple reflections are eliminated because they are below the
spectrum resolution [22]. The oscillations generated by internal multiple reflections
cannot be followed adequately because the spectrum is undersampled: the sampling
interval is greater than the oscillation spacing. However, they may create an aliasing
effect that corresponds to a lower beat period related to the difference between the
oscillation frequency and the sampling frequency [18,36]. Furthermore, contrary to
a dispersive instrument a FTIR spectrometer has no filter (except the interferogram
apodization) to damp the phenomenon. As an example a 0.180 cm air sample between
two Si windows gives spectra (2) in Fig. 5 in which the crosses indicate the sampling
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Fig. 5 Experimental absorption IR spectra (including reflection loss) of (1, black) 8 mm Si window;
(2, blue and red crosses) 1.8 mm air path between two 4 mm Si windows. a Region without window
band absorption and b region with window band absorption. (Color figure online)
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Fig. 6 Comparison between calculated (1, black) and experimental (2, red) relative transmittance of air
between two windows: a BaF2, b ZnSe, and c Si. Thickness are 26.25 µm (δ = 0.42 µm); 27.35 µm (δ =
0.34 µm); 26.26 µm (δ = 0.35 µm), respectively. (Color figure online)

points with 0.96 cm−1 sampling interval. In the non-absorbing and absorbing regions
the oscillations are separated by∼2.78 cm−1 in frames (a) and (b).1 Since the sampling
interval is 0.96 cm−1, the oscillations are readily observed. However, the amplitude of
these oscillations is reduced compared to that of Fig. 6c. This is due to (i) the filtering
effect of the apodization used in the Fourier transform of the interferograms; and (ii)
to window surfaces irregularities.

1 The distance between two oscillations is: 	ν̃ = 1/(2n�) where the “2” is for the two faces, n is the refrac-
tive index, and � for the distance between the faces. For air n = 1.00 and �= 0.18 cm 	ν̃ = 2.78 cm−1.
For one Si window n = 3.42 and � = 0.40 cm 	ν̃ = 0.37 cm−1.
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For a single Si window (8 mm) curve (1) in Fig. 5 illustrates the transmission spec-
trum obtained. The multiple reflections should produce oscillations of 0.37 cm−1 (see
foot note 1) but since these are outside the sampling interval they are not observed
except for small remaining fluctuations. However, very low amplitude oscillations
(<0.002 transmission units equal to <0.002 absorbance units) of around 24 cm−1 period
are observed in both curves (1) and (2). These oscillations displayed in spectrum (1) of
Fig. 5 are weak (<0.002 AU peak to peak). The reasons for this are: (i) window surface
roughness whose transmitted signal integrates different thicknesses (see Appendix D
for details); (ii) window flatness; (iii) window parallelism; and (iv) window absorp-
tion. Hence the resonance inside each window is reduced. For thick windows these
oscillations are difficult to observe experimentally but they can modify the spectra.

4.6 Oscillation pattern due to air sample

Since it is easy to obtain the transmission spectra of air gaps between two windows,
we use them to validate the transmission equations proposed in the present work.
Figure 6 frames (a), (b), and (c) display the relative transmission spectra of a 25 µm
air sample taken between, BaF2, ZnSe, and Si windows, respectively. These show that
the interference intensity pattern (i) increases from BaF2 to Si and (ii) is damped with
increasing frequency. The first property is in good agreement with the air-window
reflection coefficient that increases (0.035, 0.177 and 0.300, respectively) with the
window refractive indices: BaF2, 1.462; ZnSe, 2.45; and Si, 3.42. The null absorption
of air should give a constant amplitude interference pattern. However, this is not the
case because the windows are not: (i) perfectly parallel; (ii) perfectly flat; or (iii) per-
fectly polished. Integrating the transmission with Eq. (39) over the sample thickness
variation will take care of problems (i) and (ii). The calculated spectra in Fig. 6 were
fitted to the experimental ones by adjusting two parameters: average sample thickness
and sample thickness variation. For the three window pairs, the average thickness of
the 25 µm spacer was 26.62± 0.75 µm and thickness variation (δ) 0.37± 0.05 µm.

With the above parameters the spectra were recalculated. Figure 6 indicates a good
match between calculated and experimental spectra. The small remaining mismatch
could be due to (i) sample thickness distribution that may be different from a square
box; (ii) the lack of uniformity of the source beam; (iii) the variation of the window
refractive index; or (iv) a combination of these. Measurements with 50 and 100 µm
air gaps were also recorded. These compared satisfactorily with calculations. Defects
located at strong window absorptions (700, 470, 600 cm−1, for BaF2, ZnSe and Si,
respectively) are related to spectrometer inaccuracy.

Notwithstanding the small remaining mismatches the results of Fig. 6 indicate that
the oscillation damping effect with increasing frequency can be assigned to sample
thickness variations in the light beam.

4.7 Air samples and fringes

Figures 7, 8, 9 show the transmission spectra of air samples sandwiched between BaF2,
ZnSe, and Si windows, respectively. The experimental spectra were obtained for three
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Fig. 7 Comparison between calculated (1, black) and experimental (2, red) spectra of air between two BaF2
windows with different thickness: a 0.86 µm (δ = 0.18 µm); b 5.00 µm (δ = 0.50 µm); c 6.25 µm (δ =
0.40 µm). Window reflection loss and absorption are subtracted. (Color figure online)

thicknesses and compared with calculated ones with Eq. (39) that were developed up
to the 6th harmonic.

4.7.1 BaF2 windows

Figure 7a presents a very good match for an air gap thickness: 0.86 µm (δ = 0.18 µm).
The oscillations are properly reproduced along with the amplitude decrease. The base
line of the experimental spectrum was corrected with a linear function.

Figure 7b showing an air gap of 5.00 µm (δ = 0.50 µm) illustrates the good agree-
ment between calculated and measured traces. However, the experimental oscillations
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Fig. 8 Comparison between calculated (1, black) and experimental (2, red) spectra of air between two ZnSe
windows with different thickness: a 1.47 µm (δ = 0.35 µm); b 4.65 µm (δ = 0.60 µm); c 10.15 µm (δ =
0.45 µm). Window reflection loss and absorption are subtracted. (Color figure online)

are slightly weaker than the calculated ones. This is attributed to some reflection
coherence loss due to the surface roughness.

Figure 7c is for an air gap of 6.25 µm (δ = 0.40 µm) that shows a similar pattern as
that in Fig. 7b. However, at high frequency we notice that the experimentally observed
oscillation intervals increase. The present calculations cannot account for these.

4.7.2 ZnSe windows

Figure 8 frames (a), (b), and (c) show the transmission of thin air gaps of 1.47 µm (δ =
0.35 µm), 4.65 µm (δ = 0.60 µm), and 10.15 µm (δ = 0.45 µm), respectively. The
match between calculated and experimental results are good, however, the interfer-
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Fig. 9 Comparison between calculated (1, black) and experimental (2, red) spectra of air between two Si
windows with different thickness: a 3.85 µm (δ = 0.45 µm); b 8.5 µm (δ = 1.0 µm); c 10.8 µm (δ =
1.2 µm). Window reflection loss and absorbtion are subtracted. (Color figure online)

ence amplitudes are a little lower than the calculated ones. The causes of these small
mismatches are the same as for BaF2 windows.

The beat feature (amplitude decrease followed by a further increase) is readily
observed in the experimental spectrum in Fig. 8b. The fair match between calculated
and experimental spectra indicates that this feature is attributed to the air gap thickness
variations. In Fig. 8c the intensity decrease below 1,000 cm−1 of the calculated fringes
comes from the diminishing ZnSe refractive index [34,35].

4.7.3 Si windows

Figure 9 frames (a), (b), and (c) show the transmission of a thin air gap of 3.90 µm (δ =
0.45 µm), 8.5 µm (δ = 0.75 µm), and 10.80 µm (δ = 1.20 µm), respectively. The
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oscillation patterns are maintained throughout with some small resonance beats in both
calculated and experimental spectra. The match is good for the three lower frequency
oscillations but is lost for higher frequencies. The cause of mismatches is the same as
for BaF2 and ZnSe increased by the higher refractive index of Si. Furthermore Si has
OH groups adsorbed to its surface that may influence the window’s reflectivity.

Figure 9 that illustrate the Si windows absorption shows some unexpected fea-
tures that the equations developed here do not explain. Instead of the oscillation
beat (damping followed by an intensity increase) expected the oscillation shape and
interval change at the higher frequencies. Figure 9a shows a variation in the oscilla-
tion period near 3,500 cm−1. Similarly, Fig. 9b and c show oscillation mismatches
that start near 2,000 cm−1. This is due to (i) the weighing function used for thick-
ness variation integration. We choose a uniform thickness distribution which may
not be exact; (ii) the incident light may not be exactly normal; and (iii) the sur-
face roughness can attenuate differently the interferences at different frequencies and
periods.

Notwithstanding the small mismatches between calculated and experimental spec-
tra obtained for the three windows Eq. (39) developed up to the 6th harmonic
are adequate and sufficient for our needs which are mainly in the FIR. Recall
that the match between calculated and experimental spectra is very good up to
2,000 cm−1.

4.8 Liquid samples and fringes

Figure 10 illustrates the comparison between the calculated and experimental spec-
tra of liquid D2O between two windows with a pathlength of near 25 µm. With
this pathlength the stretch bands (∼2,400 cm−1) in frame (a) and (b) are stronger
than 2.5 AU which is the limit of the detectivity of our system. To the water sam-
ple absorption, the reflection losses must be added: 0.05 and 0.25 AU for BaF2
and ZnSe windows, respectively. The deformation bands (∼1,210 cm−1) are slightly
stronger than 2.5 absorbance. Notwithstanding these limits, the rest of the spec-
tra clearly show the validity of the calculated spectra. With the BaF2 windows
(27.6 µm (δ = 0.6 µm) sample thickness), the match between calculated (1) and
experimental (2) spectra is almost perfect. Only two mismatches occur: one band
near 3,400 cm−1 and a shoulder near 1,470 cm−1 are present in the experimental
spectra (2) and not in the calculated one (1). These come from a small amount of
HDO in the D2O sample used whereas the calculated spectrum one is made with
pure D2O only. Figure 10a also shows interference fringes in the 5,000–4,000 cm−1

region, where absorption is very low. These fringes (∼140 cm−1 spacing) point out
the fact that interferences are present in low absorption region and therefore must
not be neglected in the NIR region contrary to the usual practice [37]. Because the
refractive index of ZnSe (∼2.40) is higher than that of BaF2 (∼1.46), ZnSe win-
dows will generate higher amplitude interference fringes (Frame b). These are per-
fectly recovered in the calculated spectrum (26.3 µm (δ = 0.2 µm) sample thick-
ness). As for the BaF2 situation, the HDO bands appear in the experimental spec-
trum and not in the calculated one. Frame (c) shows the difference between cal-
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Fig. 10 Comparison between calculated (1, black) and experimental (2, blue) spectra of liquid D2O between
two windows: a BaF2 with a pathlength of 27.4 µm; b ZnSe with a pathlength of 26.3 µm. Frame c is the
difference between calculated and experimental spectra of D2O between the two BaF2 windows (1, black)
and ZnSe ones (2, blue). (Color figure online)

culated and experimental spectra for the two cases. Except in the strong absorp-
tion regions were there is a blackout, the two spectra are almost coincident with a
small sinusoidal remain in the spectrum (2) that originates from the ZnSe cell. The
two HDO bands (∼3,400 and ∼14,700 cm−1) are exactly matched. These results
are a clear indication of the validity of the equations developed for thin IR window
cells.
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5 Conclusions

The interference fringes observed in transmission measurements of thin sample are
difficult to quantify exactly which gives low accuracy of intensity measurements. The
new equations that take into account the cell window material evaluate the effect of
the multiple reflections encountered in transmission measurements. The new sets of
equations give better results than those presently available.

To circumscribe the cell parallel window problems some authors proposed wedge
shaped transmission cells [23]. Although these have some advantages they are not
without difficulties. The spectra may show base line distortions and drifts. How-
ever, the new analytical equations given here tackle the problem effectively as the
examples provided illustrate. Moreover, these equations deal with the problems
of boxcar cells whose windows are not perfectly parallel or have minute surface
imperfections.

The validity and usefulness of the equations presented here will take their full
meaning in the measurements of pure liquid samples because these are obtained in
a few micrometer thin cells that generate fringes. For liquid water for which the set
of equations was developed they are essential. For pure liquids used as standards, the
proposed equations will give better optical properties. These equations should be a
valuable asset for all spectroscopists working with these liquids since the use of trans-
mission cells with different pathlength [29–31] may not eliminate the error generated
by the multiple internal reflections. The alternative way that we propose here is to com-
pare, once the optical properties settled, the experimental results with those obtained
from calculations. This is actually the way to obtain the best optical properties of pure
liquids. For pure liquid light and heavy water, for which this mathematical incursion
was made, these calculations will be used in a forthcoming paper that will give their
newly calculated optical properties.

Acknowledgements This work was supported in part by a grant from the Natural Sciences and Engineer-
ing Research of Canada (NSERC).

6 Appendix A. Integration of the transmission equation over the sample
thickness variation

The problem is to obtain an analytical form for integration of the approximation
Eq. 38 that gives the transmission.

6.1 Development to the 2nd order in Q

Developing explicitly the series in Eq. (38) to the 2nd order in Q and integrating over
sample thickness �1 ± δ gives:
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That is, after performing the integrations:
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Equation (A2) indicates that the oscillations governed by the period (T1) for light
passing through the entire sample are modulated by the shorter oscillation period
related to the sample thickness variation (δ). The modulation follows a damping that
varies with frequency according to the form sin(Xν)/Xν, where X is a quantity that
relates to harmonics obtained from the development in Q.

In the limiting case of δ = 0, Eq. (A2) should give the same result as Eqs. (26) and
(32). However, this verification is not easy because Eq. (A2) was obtained by using
an approximation of Eqs. (26) and (32).

6.2 Limit evaluation of Eq. (A2) at null frequency

At very low frequency, the terms of the form sin(2x)/x in Eq. (A2) can be replaced by
a factor of 2 which is its limiting value for x→ 0. This gives:
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That can be further reduced to:
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For ν = 0, (i.e.: r2I = 0) the rightmost term in Eq. (A4) is different from that obtained
directly with Eqs. (26) and (32) because it diverges above the 4th order in r2R . There-
fore, approximation by Eq. (A2) is not sufficient for even relatively low values of r2R .
Consequently a higher order is required for this evaluation.

6.3 Integration over sample thickness variations: 3rd order approximation

Developing Eq. (38) in series to the 3rd order in Q and integrating one gets:
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(A5)

This is similar to Eq. (A2) obtained with a 2nd order approximation in Q but with
supplementary trigonometric terms in (6ωT1). Terms in e−pα1 are identical in Eqs.
(A5) and (A2) for p = 0, 1, and 2. This is due to the common part from the 2nd order
in Q. In Eq. (A5), the coefficient of each term in e−pα1 with p > 3 will be modified
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when using higher orders in Q and therefore are not exact. At null frequency, Eq. (A5)
becomes:
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This indicates that even the 3rd order used for the approximation in Eq. (38) is insufi-
cient at null frequency for reflection ratio r2R above 0.5. This is the case for water since
its refractive index is above 3 from 0 to 5 cm−1 giving reflection coefficient above 0.5
with BaF2 and ZnSe windows. This difficulty is surmounted by increasing the order
of approximation in Eq. (38).

6.4 Integration over sample thickness variations: 4th order approximation

Developing 1/(1+ Q) in series to the 4th order in Q one gets:
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At the approximation order used in Q (4th), the coefficient of each term in e−pα1

with p < 5 are the right ones. Terms with p > 4 will be modified when using higher
orders in Q and therefore are not exact.

At this stage, one can distinguish two kinds of approximation parameters: the first
one is simply the order of the approximation in Q; the second one is the approx-
imation in the harmonics level of the result. Approximation at the pth order in Q
will produce terms up to the pth harmonics in modulation frequency of the oscilla-
tion amplitudes. However, the coefficient relative to each of the harmonics obtained
by this way are not the exact ones because further terms will be added to them by
increasing the approximation order in Q. As a result, approximation will remain poor
at very low frequency, due to the inaccuracy, for instance, of the 0th harmonics coef-
ficient.

Fortunately, Eq. (A7) permits drawing the picture of the results from a higher
order approximation in Q relative to the lower harmonics terms in cos(2pωT1) and
sin(2pωT1). From Eq. (A7) we deduce the approximation of Eq. (32) at the fourth
harmonics in modulating function (p = 4, that is: 8ωT1):
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∞∑

p=0

[(
r2
2R + r2

2I

)2
e−2α1

]p

× [(r2
2R − r2

2I

)
cos (2ωT1)+ 2r2I r2R sin (2ωT1)

]

+2e−2α1
∞∑

p=0

[(
r2
2R + r2

2I

)2
e−2α1

]p {[(
r2
2R − r2

2I

)2 − 4r2
2I r2

2R

]

× cos (4ωT1)+ 4r2I r2R
(
r2
2R − r2

2I

)
sin (4ωT1)

}

+2e−3α1
∞∑

p=0

[(
r2
2R + r2

2I

)2
e−2α1

]p { (
r2
2R − r2

2I

)

×
[(

r2
2R − r2

2I

)2 − 12r2
2I r2

2R

]
cos (6ωT1)

+ 2r2I r2R

[
3
(
r2
2R − r2

2I

)2 − 4r2
2I r2

2R

]
sin (6ωT1)

}

+2e−4α1
∞∑

p=0

[(
r2
2R + r2

2I

)2
e−2α1

]p

×

⎧
⎪⎪⎨

⎪⎪⎩

[(
r2
2R − r2

2I

)4 + 16r4
2I r4

2R − 24
(
r2
2R − r2

2I

)2
r2
2I r2

2R

]
cos (8ωT1)

+8
(
r2
2R − r2

2I

)
r2I r2R

[(
r2
2R − r2

2I

)2 − 4r2
2I r2

2R

]
sin (8ωT1)

⎫
⎪⎪⎬

⎪⎪⎭

+ f (cos (2pωT1) , sin (2pωT1) , p > 4)

(A8)

This is simplified to:
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1− Q (l1)+ Q2 (l1)− Q3 (l1)+ Q4 (l1) · · · = 1

1− (r2
2R + r2

2I

)2
e−2α1

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

+2e−α1
[(

r2
2R − r2

2I

)
cos (2ωT1)+ 2r2I r2R sin (2ωT1)

]

+2e−2α1

{[(
r2
2R − r2

2I

)2 − 4r2
2I r2

2R

]
cos (4ωT1)

+ 4r2I r2R
(
r2
2R − r2

2I

)
sin (4ωT1)

}

+2e−3α1

{(
r2
2R − r2

2I

) [(
r2
2R − r2

2I

)2 − 12r2
2I r2

2R

]
cos (6ωT1)

+ 2r2I r2R

[
3
(
r2
2R − r2

2I

)2 − 4r2
2I r2

2R

]
sin (6ωT1)

}

+2e−4α1

⎧
⎨

⎩

[(
r2
2R − r2

2I

)4 + 16r4
2I r4

2R − 24
(
r2
2R − r2

2I

)2
r2
2I r2

2R

]
cos (8ωT1)

+8
(
r2
2R − r2

2I

)
r2I r2R

[(
r2
2R − r2

2I

)2 − 4r2
2I r2

2R

]
sin (8ωT1)

⎫
⎬

⎭

+ f (cos (2pωT1) , sin (2pωT1) , p > 4)

(A9)

In this, the coefficients affecting higher periods of p > 4 cannot be evaluated easily.
Integration of Eq. (38) with Eq. (A9) on sample thickness λ1 ± δ gives:

1

2δ

�1+δ∫

�1−δ

Td�1 ≈
(

1− r2
s

)2 ∥∥∥1− r∗22

∥∥∥
2

e−(α1+α2+α3) × 1

1− (r2
2R + r2

2I

)2
e−2α1

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
+ sin(400πν̃n1δ)

200πν̃n1δ
e−α1

[(
r2
2R − r2

2I

)
cos (2ωT1)+ 2r2I r2R sin (2ωT1)

]

+ sin(800πν̃n1δ)
400πν̃n1δ

e−2α1

{[(
r2
2R − r2

2I

)2 − 4r2
2I r2

2R

]
cos (4ωT1)

+ 4r2I r2R
(
r2
2R − r2

2I

)
sin (4ωT1)

}

+ sin(1200πν̃n1δ)
600πν̃n1δ

e−3α1
(
r2
2R − r2

2I

) [(
r2
2R − r2

2I

)2 − 12r2
2I r2

2R

]

×cos (6ωT1)+ 2r2I r2R

[
3
(
r2
2R − r2

2I

)2 − 4r2
2I r2

2R

]
sin (6ωT1)

+ sin(1600πν̃n1δ)
800πν̃n1δ

e−4α1

×
⎧
⎨

⎩

[(
r2
2R−r2

2I

)4 + 16r4
2I r4

2R−24
(
r2
2R−r2

2I

)2
r2
2I r2

2R

]
cos (8ωT1)

+8
(
r2
2R − r2

2I

)
r2I r2R

[(
r2
2R − r2

2I

)2 − 4r2
2I r2

2R

]
sin (8ωT1)

⎫
⎬

⎭

+ f (cos (2pωT1) , sin (2pωT1) , p > 4)

(A10)

A discussion on the order of the series development required to provide the desired
accuracy is given in Appendix (B). In the following we give a simple way to obtain
terms at higher harmonics from higher order approximation in Q in Eq. (38).

6.5 Integration over sample thickness variations: 5th harmonic approximation

Addition of the 5th order approximation to Eq. (A10) requires the term coefficients
with period 10ωT1. These necessarily come from sinp(s) × cosq(s) terms having
(p + q) = 5. There are six possibilities that need to be transformed into sin(us) and
cos(us) terms with u = 1–5:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos5 (s) = 5
8 cos (s)+ 5

16 cos (3q)+ 1
16 cos (5s)

cos4 (s) sin (s) = 1
8 sin (s)+ 3

16 sin (3s)+ 1
16 sin (5s)

cos3 (s) sin2 (s) = 1
8 cos (s)− 1

16 cos (3s)− 1
16 cos (5s)

cos2 (s) sin3 (s) = 1
8 sin (s)+ 1

16 sin (3s)− 1
16 sin (5s)

cos (s) sin4 (s) = 1
8 cos (s)− 3

16 cos (3s)+ 1
16 cos (5s)

sin5 (s) = 5
8 sin (s)− 5

16 sin (3s)+ 1
16 sin (5s)

(A11)

Furthermore, defining from Eq. (37): Q = a cos(2ωT1) − b sin(2ωT1) + c, (a,
b, and c are three coefficients that do not depend on T1) the sinp × cosq terms with
(p + q) = 5 will come from the following combinations from (−Q)5: a5, 5a4b,
−10a3b2, 10a2b3, 5ab4, and b5. Every term containing c will be of a lower power
(p + q) < 5. From Eq. (A11), terms in cos(5s) will come from a5, −10a3b2, and
5ab4, while those in sin(5s) from 5a4b, −10a2b3, and b5. The multiplier of each
cos(5s) and sin(5s) term is 1/16 in Eq. (A11). Hence one obtains:

{
a
[
a4 − 10a2b2 + 5b4

]
cos (10ωT1)

+b
[
5a4 − 10a2b2 + b4

]
sin (10ωT1)

(A12)

Replacing a and b by their value taken from Eq. (37), taking care of the respective
sign of cos(5s) and sin(5s) in Eq. (A11), one gets:

e−5α1

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
16 2

(
r2
2R − r2

2I

) [
16
(
r2
2R − r2

2I

)4 − 10× 4
(
r2
2R − r2

2I

)2

×16r2
2I r2

2R + 5× 256r4
2I r4

2R

]
cos (10ωT1)

+ 1
16 4r2I r2R

[
5× 16

(
r2
2R − r2

2I

)4 − 10× 4
(
r2
2R − r2

2I

)2

×16r2
2I r2

2R + 256r4
2I r4

2R

]
sin (10ωT1)

(A13)

This simplifies into:

2e−5α1

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
r2
2R − r2

2I

) [(
r2
2R − r2

2I

)4 − 40
(
r2
2R − r2

2I

)2
r2
2I r2

2R + 80r4
2I r4

2R

]

× cos (10ωT1)

+2r2I r2R

[
5
(
r2
2R − r2

2I

)4 − 40
(
r2
2R − r2

2I

)2
r2
2I r2

2R + 16r4
2I r4

2R

]

× sin (10ωT1)

(A14)

The term in this is added into Eq. (A9). The integration of term given by Eq. (A14)
performed similarly to that for lower harmonics gives

+ sin (2000πν̃n1δ)

1000πν̃n1δ
e−5α1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
r2
2R − r2

2I

) [(
r2
2R − r2

2I

)4 − 40
(
r2
2R − r2

2I

)2

× r2
2I r2

2R + 80r4
2I r4

2R

]
cos (10ωT1)

+2r2I r2R

[
5
(
r2
2R − r2

2I

)4 − 40
(
r2
2R − r2

2I

)2

× r2
2I r2

2R + 16r4
2I r4

2R

]
sin (10ωT1)

(A15)

123



J Math Chem (2010) 47:590–625 621

The above term is added to Eq. (A10) to give the result at one higher harmonic. This
calculation technique can be used to increase the harmonic level in the approximation
up to the desired accuracy. See Appendix B for details.

6.6 Integration over sample thickness variations: 6th harmonic approximation

Similarily to the addition of the 5th harmonics, the addition of the 6th order harmonics
only requires the term coefficients with period 12ωT1. These necessarily come from
sinp(s) × cosq(s) terms having (p + q) = 6. There are seven possibilities that need
to be transformed into sin(us) and cos(us) terms with u varying from 1 to 6:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos6 (s) = 5
16 + 15

32 cos (2s)+ 3
16 cos (4s)+ 1

32 cos (6s)

cos5 (s) sin (s) = 5
32 sin (2s)+ 1

8 sin (4s)+ 1
32 sin (6s)

cos4 (s) sin2 (s) = 1
16 + 1

32 cos (2s)− 1
16 cos (4s)− 1

32 cos (6s)

cos3 (s) sin3 (s) = 3
32 sin (2s)− 1

32 sin (6s)

cos2 (s) sin4 (s) = 1
16 − 1

32 cos (2s)− 1
16 cos (4s)+ 1

32 cos (6s)

cos (s) sin5 (s) = 5
32 sin (2s)− 1

8 sin (4s)+ 1
32 sin (6s)

sin6 (s) = 5
16 − 15

32 cos (2s)+ 3
16 cos (4s)− 1

32 cos (6s)

(A16)

Since Q = −a cos(2ωT1) − b sin(2ωT1) + c, the sinp × cosq terms with (p +
q) = 6 will come from the following combination obtained from (−Q)6 only: a6,
6a5b, 15a4b2, 20a3b3, 15a2b4, 6ab5, and b6. According to Eq. (54), terms in cos(6s)
will come from a6, −15a4b2, +15a2b4, and −b6, and those in sin(6s) from 6a5b,
−20a3b3, and +6ab5. The multiplier of each cos(6s) and sin(6s) term is 1/32 in
Eq. (A16). Hence:

{[
a6 − 15a4b2 + 15a2b4 − b6

]
cos (12ωT1)

+ [6a5b − 20a3b3 + 6ab5
]

sin (12ωT1)
(A17)

Replacing a and b by their value taken from Eq. (37) into Eq. (A17) and rearranging,
one gets:

2e−6α1

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[(
r2
2R − r2

2I

)6 − 60
(
r2
2R − r2

2I

)4
r2
2I r2

2R

+ 240
(
r2
2R − r2

2I

)2
r4
2I r4

2R − 64r6
2I r6

2R

]
cos (12ωT1)

+
[
12
(
r2
2R − r2

2I

)5
r2I r2R − 160

(
r2
2R − r2

2I

)3
r3
2I r3

2R

+ 192
(
r2
2R − r2

2I

)
r5
2I r5

2R

]
sin (12ωT1)

(A18)

This term is added into Eq. (A9) after adding that in Eq. (A14). The integration of
term given by Eq. (56) performed similarly to lower harmonics gives
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+ sin (2400πν̃n1δ)

1200πν̃n1δ

×e−6α1

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[(
r2
2R − r2

2I

)6 − 60
(
r2
2R − r2

2I

)4
r2
2I r2

2R

+ 240
(
r2
2R − r2

2I

)2
r4
2I r4

2R − 64r6
2I r6

2R

]
cos (12ωT1)

+
[
12
(
r2
2R − r2

2I

)5
r2I r2R − 160

(
r2
2R − r2

2I

)3
r3
2I r3

2R

+192
(
r2
2R − r2

2I

)
r5
2I r5

2R

]
sin (12ωT1)

(A19)

This term is added to Eq. (A10) along with that given by Eq. (A15) to give the
evaluation of the transmission with one higher harmonic.

7 Appendix B. Discussion on the approximation accuracy

Let a be the accuracy level required for the transmission approximation. Let r be
the reflection coefficient (real part) at the sample window interface. Interferences are
generated by two reflections simultaneously (one on each face of the sample at the
transparent windows) giving the reflection factor of r2. Equation (A10) and others
contain this term (for the real part of reflection only). Therefore, the approximation
order n in r (from approximations in Q) should satisfy the relation r2n < a < 1. This
gives: n ln

(
r2
)

< ln (a) < 0 and after rearrangement n >
ln(a)
ln(r)

. With this estimation,

approximation to the 4th order in Q (in r2) give an error less than 1% in the evaluation
of the transmission for an r less than 0.5. Furthermore, Eq. (A10) already includes
higher orders except for the terms oscillating with a period above 8ωT1.

8 Appendix C. Validity of the approximation: 1
2δ

�+δ∫

�−δ

e−K x dx ≈ e−K�

In Eq. (39), we neglected the influence of the sample thickness variation on the overall
intensity in absorbance, simply taking:

1

2δ

�+δ∫

�−δ

e−K x dx ≈ e−K�, (C1)

where K is the usual extinction coefficient (absorption coefficient in unit of m−1).
According to the properties of the exponential function, one gets:

1

2δ

�+δ∫

�−δ

e−K x dx = 1

2δ

[
− 1

K
e−K (�+δ) −

{
− 1

K
e−K (�−δ)

}]

= 1

2K δ
e−K�

(
e+K δ − e−K δ

)
(C2)
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Replacing the exponential by its series development at the 4th order:

1

2δ

�+δ∫

�−δ

e−K x dx

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

= 1
2K δ

e−K�
[
1+ K δ + (K δ)2

2 + (K δ)3

6

+ · · · −
(

1− K δ + (K δ)2

2 − (K δ)3

6

)]

= 1
2K δ

e−K�
[
2K δ + 2 (K δ)3

6

]

= e−K�
[
1+ (K δ)2

6

]

(C3)

The relative accuracy of the approximation 1
2δ

�+δ∫

�−δ

e−K x dx ≈ e−K� is therefore

given by: (K δ)2

6 . On the absorbance scale, it gives a different level of accuracy:

log

⎛

⎝ 1

2δ

�+δ∫

�−δ

e−K x dx

⎞

⎠ = log

(

e−K�

[

1+ (K δ)2

6

])

= −K�

ln (10)
+ log

(

1+ (K δ)2

6

)

(C4)

Hence, the relative error in intensity is transformed in an offset in absorbance
(a decrease of the absorbance in accordance to what was observed for very thin sam-
ples). The decrease of absorbance only depends on the variation of the sample thick-
ness. However, the relative absorbance error is strongly dependent on the sample
thickness itself. This means that the relative error will be higher for thinner samples.
This agrees with what was observed with very thin water samples (less than 6 µm).
Further, the absorbance error could be put in the following form:

log

(

1+ (K δ)2

6

)

= 1

ln (10)

[
(K δ)2

6
− (K δ)4

72
+ · · ·

]

(C5)

Application to the water spectrum: K = 0.28 µm−1 at 800 cm−1 [9–11]; a thick-
ness variation of δ = 0.4 µm will give a small absorbance error of 1 mAU. However,
a thickness variation of δ = 3.7 µm will give an absorbance error of 78 mAU. This
cannot be neglected.

In Eq. (39), the term e−α1 in the first factor of the right member of this equation

should be replaced by: e−α1

[
1+ 1

6

(
α1

δ
�1

)2
]

. Every other places in the oscillating

terms were e−α1 appears could stay unchanged because it only slightly affects the
oscillation amplitudes.
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9 Appendix D. Effect of window thickness variation

Let d be the thickness of a window made of material with real refractive index n. The
phase change for two passes through the material at wave frequency ν is:

ϕν
d = 2πν

2dn

c
(D1)

where c is the speed of light. Let ν0 be the frequency for which the phase change in
ϕν

d is 2π :

ν0 = c

2dn
(D2)

Let νm = mν0 be a multiple of the resonant frequency ν0. At this frequency, the
phase change is ϕ

νm
d = mϕ

ν0
d . Let δ be an increase of thickness d for which the phase

change ϕ
νm
d+δ at frequency νm increases by π from that at thickness d, which is:

ϕ
νm
d+δ − ϕ

νm
d = π, (D3)

This gives:

4πmν0
δ

c
n = π (D4)

Introducing Eq. (D2) into (D4) gives:

δ = d

2m
(D5)

For example, interference fringes separated by 0.5cm−1 (that comes from window
thickness d and refractive index n) will disappear almost completely at 50 cm−1

(m = 100) with a window thickness variation superior than±0.5% (δ/d = [2×m]−1).
The phase difference due to the thickness difference δ is:

ϕν̃
d+δ − ϕν̃

d

2π
= 200nν̃δ, (D6)

Introducing Eq. (D5) into (D6) gives:

ϕν̃
d+δ − ϕν̃

d

2π
= 100n

d

m
ν̃, (D7)

Hence, for a given value of δ(= d/m) the phase difference increases with fre-
quency. The frequency for which the phase difference is exactly 2π is: ν̃ = 1

200nδ
.

Therefore, integration over the thickness variation will not cover an exact number of
period at all frequencies so that a beat in the oscillations will be observed as in Fig. 8.
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However, oscillation amplitude will decrease with increasing frequency. For instance,
for δ = 0.01 mm (0.3% of 3 mm windows) gives 500 cm−1 for the 1st extinction. This
cyclic damping could be used to obtain the sample thickness variation.
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